(U)

UNICUS OLYMPIADS \#UnicusIsuniaue Sample Paper

Unicus Global Mathematics Olympiad (UGMO)

Time: 60 minutes

Pattern and Marking Scheme			
	Total Questions	Marks per Question	Total Marks
	30	1	30
	15	2	30
Grand Total	$\mathbf{4 5}$		60

Unicus Global Mathematics Olympiad (UGMO)

The Unicus Global Olympiad is organised around two dimensions:

1. Content dimension, specifying the subject matter domains to be assessed
2. Cognitive dimension, specifying the thinking processes to be assessed

Target percentages of the question paper devoted to cognitive domains

Target percentages of the question paper devoted to content domains

Content Domain

For more details, visit https://www.unicusolympiads.com/.

Unicus Global Mathematics Olympiad (UGMO)

Classic Section (Each Question is 1 Mark)

\section*{| Cognitive Domain: Knowing | Content Domain: Number system |
| :--- | :--- |}

1. The sum of the L.C.M. and H.C.F. of two numbers is 1260 . If their L.C.M. is 900 more than their H.C.F. Find the product of two numbers.
a. 194400
b. 203400
c. 198400
d. 205400

\section*{| Cognitive Domain: Applying | Content Domain: Number system |
| :--- | :--- |}

2. If $x=(4+\sqrt{ } 15)^{1 / 3}+(4-\sqrt{ } 15)^{1 / 3}$, then find the value of $x^{3}-3 x$.
a. 5
b. 8
c. 4
d. 12

Cognitive Domain: Applying

Content Domain: Number system
3. If $x=2 /(\sqrt{10}-\sqrt{8}), y=2 /(\sqrt{10}+2 \sqrt{2})$, then find $(x-y)^{2}$.
a. $8 \sqrt{ } 2$
b. $4 \sqrt{ } 2$
c. 32
d. 64

Cognitive Domain: Knowing
 Content Domain: Number system

4. Solve for $x: \log (3+2 \log (1+x))=0$.
a. $-9 / 10$
b. $1 / 10$
c. -1
d. $1 / 7$

\section*{| Cognitive Domain: Knowing | Content Domain: Algebra |
| :--- | :--- |}

5. If $x^{3}+2 x^{2}+a x+b$ has factors $x+1$ and $x-1$, find a and b.
a. $1,-2$
b. $-1,-2$
c. $-2,-1$
d. 1,2

Cognitive Domain: Reasoning \quad Content Domain: Algebra

6. The polynomial $f(x)$ has roots of the equations $3,-3$ and $-k$. Given that the coefficient of x^{3} is 2 and that $f(x)$ has a remainder of 8 , when divided by $x+1$, find the value of k.
a. -2
b. -1
c. 1
d. 0

Unicus Global Mathematics Olympiad (UGMO)

Cognitive Domain: Applying

7. Two pipes are used to fill a swimming pool in 12 hours. If the larger pipe is used for four hours and the smaller pipe for nine hours, only half of the pool is filled. How long would it take larger pipes and smaller pipes to fill the pool on their own?
a. 30 hours, 20 hours
b. 20 hours, 30 hours
c. 10 hours, 30 hours
d. 30 hours, 10 hours

\section*{| Cognitive Domain: Knowing | Content Domain: Algebra |
| :--- | :--- |}

8. Find the solution set of $1 /(2 x-4)<0$.
a. $(-\infty, \infty)$
b. $[2, \infty)$
c. $(2, \infty)$
d. $(-\infty, 2]$

\section*{| Cognitive Domain: Applying | Content Domain: Algebra |
| :--- | :--- |}

9. Find the two natural numbers so that their sum cannot exceed 6 and the difference between first and second number is positive and does not exceed 2 and also the resultant sum is maximum.
a. $(4,2)$
b. $(1,3)$
c. $(2,2)$
d. $(1,5)$

\section*{| Cognitive Domain: Reasoning | Content Domain: Algebra |
| :--- | :--- |}

10. A classroom can fit at least 9 tables with an area of $1 \mathrm{~m}^{2}$ and the perimeter of the classroom is 12 m . Find the bounds on the length and breadth of the classroom.
a. length $<1 \mathrm{~m}$, breadth $>4 \mathrm{~m}$
b. length $<3 \mathrm{~m}$, breadth $>3 \mathrm{~m}$
c. length $<5 \mathrm{~m}$, breadth $>5 \mathrm{~m}$
d. length $<2 \mathrm{~m}$, breadth $>2 \mathrm{~m}$

Cognitive Domain: Knowing

11. Find the equation whose roots are the reciprocals of the roots of $3 x^{2}-5 x+7=0$.
a. $2 x^{2}-5 x+9=0$
b. $5 x^{2}-5 x+7=0$
c. $7 x^{2}-5 x+3=0$
d. $5 x^{2}-7 x+3=0$

Cognitive Domain: Applying

Content Domain: Algebra

12. An aeroplane travelled a distance of 800 km at an average speed of $x \mathrm{~km} / \mathrm{hr}$. On the return journey, the speed was increased by $80 \mathrm{~km} / \mathrm{hr}$. If the return journey took 30 minutes less than the onward journey, find the average aeroplane speed.

Unicus Global Mathematics Olympiad (UGMO)

a. $160 \mathrm{~km} / \mathrm{h}$
b. $400 \mathrm{~km} / \mathrm{h}$
c. $420 \mathrm{~km} / \mathrm{h}$
d. $320 \mathrm{~km} / \mathrm{h}$

\section*{| Cognitive Domain: Reasoning | Content Domain: Algebra |
| :--- | :--- |}

13. Out of a group of employees, twice the square root of the number of employees are on a trip to attend a conference held by the company, half the number are in the office while the remaining 6 are on leave. What is the number of employees in the group?
a. 36
b. 42
c. 54
d. 60

\section*{| Cognitive Domain: Applying | Content Domain: Geometry |
| :--- | :--- |}

14. If $B C: C D=2: 3, A E: E C=3: 4$ and $B C: A E=2: 3$, then find the ratio of the area of $\triangle E C D$ to the area of $\triangle A E B$.

a. $4: 3$
b. $2: 3$
c. $2: 1$
d. $3: 5$

\section*{| Cognitive Domain: Knowing | Content Domain: Geometry |
| :--- | :--- |}

15. The perimeters of two similar triangles $A B C$ and $P Q R$ are 72 cm and 48 cm , respectively. If $P Q=20 \mathrm{~cm}$, then find the length of $A B$.
a. 60 cm
b. 30 cm
c. 15 cm
d. 24 cm

\section*{| Cognitive Domain: Applying | Content Domain: Algebra |
| :--- | :--- |}

16. The sum of the first three terms of a G.P. is 16 and the sum of the next three terms is 128 . Determine the fourth term of the G.P.
a. $64 / 7$
b. $16 / 7$
c. $128 / 7$
d. $256 / 7$

Unicus Global Mathematics Olympiad (UGMO)

Cognitive Domain: Applying

Content Domain: Geometry
17. In the shown figure, O is the centre of the circle. $B C$ and $C D$ are equal chords. If $\angle O B C=55^{\circ}$, then find $\angle B A D$.

a. 70°
b. 60°
c. 80°
d. 45°

Cognitive Domain: Reasoning

 Content Domain: Geometry18. In the figure above (not to scale) $A C$ is the diameter of the circle and $\angle A D B=20^{\circ}$, then find $\angle B P C$.

a. 80°
b. 110°
c. 90°
d. 100°

Cognitive Domain: Knowing

Content Domain: Trigonometry
19. Evaluate:

a. $\cot \theta-\operatorname{cosec} \theta$
b. $\sec \theta-\cot \theta$
c. $\operatorname{cosec} \theta-\cot \theta$
d. $\tan \theta-\cot \theta$

Unicus Global Mathematics Olympiad (UGMO)

Cognitive Domain: Applying	Content Domain: Trigonometry

20. A vertical pole consists of two parts, the lower part being one-third of the whole. At a point in the horizontal plane through the base of the pole and a distance of 20 m from it, the upper part of the pole subtends an angle whose tangent is $1 / 2$. What are the possible heights of the pole?
a. 20 m or $20 \sqrt{3} \mathrm{~m}$
b. 20 m or 60 m
c. 16 m or 48 m
d. 40 m or 120 m

\section*{| Cognitive Domain: Reasoning | Content Domain: Trigonometry |
| :--- | :--- |}

21. A spherical balloon of radius r subtends an angle α at the eye of an observer, while the angle of elevation of its centre is β. Find the height of the centre of the balloon.
a. $r \sin \alpha / 2 \cdot \cos \beta$
b. $r \sec \alpha / 2 \cdot \sin \beta$
c. $r \operatorname{cosec} \alpha / 2$. $\sin \beta$
d. $r \cos \alpha / 2 . \sin \beta$

\section*{| Cognitive Domain: Reasoning | Content Domain: Mensuration |
| :--- | :--- |}

22. A sector of a circle of radius 6 cm has an angle of 120°. It is rolled up so that the two bounding radii are joined together to form a cone. Find the total surface area of the cone and the volume of the cone.
a. $8 \pi \mathrm{~cm}^{2},(8 \pi \sqrt{ } 2) / 3 \mathrm{~cm}^{3}$
b. $24 \pi \mathrm{~cm}^{2},(24 \sqrt{ } 2 \pi) / 3 \mathrm{~cm}^{3}$
c. $32 \pi \mathrm{~cm}^{2},(32 \sqrt{ } 2 \pi) / 3 \mathrm{~cm}^{3}$
d. $\quad 16 \pi \mathrm{~cm}^{2},(16 \sqrt{ } 2 \pi) / 3 \mathrm{~cm}^{3}$

\section*{| Cognitive Domain: Applying | Content Domain: Mensuration |
| :--- | :--- |}

23. A circle with a diameter $P Q R S$, where the radius of the circle is 6 cm . The lengths $P Q, Q R$, and RS are all equal. Semi-circles are drawn on $P Q$ and $Q S$ as diameters. Determine the ratio of the area of the shaded region to the area of the unshaded region.

a. $5: 13$
b. $1: 2$
c. $25: 121$
d. $5: 12$

Unicus Global Mathematics Olympiad (UGMO)

Cognitive Domain: Knowing

Content Domain: Coordinate geometry
24. If the roots of the quadratic equation $x^{2}-5 x+6=0$ are the intercepts of a line, then find the equation of the line.
a. $2 x+3 y=6$
b. $3 x+2 y+6$
c. Either (a) or (b)
d. neither (a) nor (b)

Cognitive Domain: Reasoning

Content Domain: Coordinate Geometry

25. Find the equation of median drawn to the side $B C$ of $\triangle A B C$ whose vertices are $A(1,-2), B(3$, $6)$ and $C(5,0)$.
a. $3 x-5 y-11=0$
b. $3 x-5 y+11=0$
c. $5 x+3 y-11=0$
d. $5 x-3 y-11=0$

Cognitive Domain: Knowing

Content Domain: Coordinate Geometry

26. Find the area of the triangle formed by the line $3 x-4 y+12=0$ with the coordinate axes.
a. 6 sq. units
b. 12 sq. units
c. 1 sq. units
d. 36 sq. units

Cognitive Domain: Applying
 Content Domain: Statistics

27. If the arithmetic mean of the following distribution is 8.2 , then find the value of p.

\mathbf{x}	1	3	5	9	11	13
\mathbf{f}	3	2	7	p	4	8

a. 5
b. 6
c. 9
d. 12

\section*{| Cognitive Domain: Reasoning | Content Domain: Statistics |
| :--- | :--- |}

28. The mean of the following distribution is 56 , but the frequencies f_{1} and f_{2} in classes 20-40 and $80-100$ respectively are missing. Find the missing frequencies.

Class - interval	Frequency
$0-20$	16
$20-40$	f_{1}
$40-60$	25
$60-80$	16
$80-100$	f_{2}
$100-120$	10
Total	90

Unicus Global Mathematics Olympiad (UGMO)

a. $\mathrm{f}_{1}=12, \mathrm{f}_{2}=13$
b. $f_{1}=13, f_{2}=12$
c. $f_{1}=11, f_{2}=12$
d. $f_{1}=12, f_{2}=11$

Cognitive Domain: Applying
 Content Domain: Statistics

29. Two dice are thrown simultaneously. What is the probability that the sum of the numbers appearing on the dice is a two-digit prime number?
a. $1 / 18$
b. $5 / 12$
c. $1 / 6$
d. $1 / 36$

\section*{| Cognitive Domain: Reasoning | Content Domain: Statistics |
| :--- | :--- |}

30. $x=$ ABCDEFGH...Z. Find the probability of a letter selected from those in odd positions of x being a vowel.
a. $6 / 13$
b. $5 / 13$
c. $7 / 13$
d. $4 / 13$

Scholar Section (Each Question is $\mathbf{2}$ Marks)

Cognitive Domain: Reasoning

31. If $\mathrm{ab}+4=\mathrm{cd}$ and $\mathrm{ba}+40=\mathrm{dc}$, where ab , cd , ba and dc are 2-digit prime numbers. Further, b and d are the prime numbers and a, c are neither prime nor composite. Find the value of ($a b$ $+b a) /(c d+d c)$.
a. 1
b. $1 / 8$
c. $1 / 4$
d. $1 / 2$

Cognitive Domain: Applying
 Content Domain: Algebra

32. If the zeroes of the polynomial $x^{3}-3 x^{2}+x+1$ are $a-b, a, a+b$, then find the value of a and b.
a. $1,2 \sqrt{ } 2$
b. $\pm \sqrt{ } 2,2$
c. $1, \pm \sqrt{ } 2$
d. $-\sqrt{ } 2,1$

Cognitive Domain: Knowing

Content Domain: Algebra

33. Find the value of x and y.

$$
\frac{2 x+1}{3}+\frac{3 y+2}{5}=2 \text { and } \frac{2(2 x+1)}{3}-\frac{3(3 y+2)}{5}=-1
$$

a. $x=1, y=1$
b. $x=-1, y=1$
c. $x=1, y=-1$
d. $x=1 / 2, y=1$

Unicus Global Mathematics Olympiad (UGMO)

\section*{| Cognitive Domain: Reasoning | Content Domain: Algebra |
| :--- | :--- |}

34. Eighteen men can complete work in 14 days. Three women do as much work as two men. Five men and six women started the work and continued for 4 days. Subsequently, 3 more men joined the group. In how many total days was the work completed?
a. $17^{1 / 3}$
b. $21 \frac{1}{3}$
c. 22
d. 18

\section*{| Cognitive Domain: Reasoning | Content Domain: Algebra |
| :--- | :--- |}

35. Find the sum of the series $6+66+666+$ \qquad upto n terms.
a. $\frac{2\left(10^{n+1}-8 n-10\right)}{27}$
b. $\frac{2\left(10^{n+1}-9 n-9\right)}{27}$
c. $\frac{2\left(10^{n+1}-10 n-9\right)}{27}$
d. $\frac{2\left(10^{n+1}-9 n-10\right)}{27}$

Cognitive Domain: Applying

36. Find the value of $(2 x) /\left(1-x^{2}\right)$ if the value of x is given as below:

a. $\cos \theta$
b. $\sin \theta$
c. $\cot \theta$
d. $\tan \theta$

\section*{| Cognitive Domain: Reasoning | Content Domain: Trigonometry |
| :--- | :--- |}

37. Find the value of $\tan x . \cot y$, if:

$$
\frac{\operatorname{Sin}(x-y)}{\operatorname{Sin}(x+y)}=\frac{3}{5}
$$

a. 4
b. 3
c. 2
d. 1

Unicus Global Mathematics Olympiad (UGMO)

\section*{| Cognitive Domain: Reasoning | Content Domain: Mensuration |
| :--- | :--- |}

38. $A B C D$ and EFGA are the squares of side 4 cm each. In square $A B C D, D M B$ and $P M Q$ are the arcs of circles with centres at A and C respectively. In square AEFG, the shaded region is enclosed by two arcs of circles with centres at A and F respectively. What is the ratio of the shaded regions of the squares $A B C D$ and AEFG respectively?

a. $2+\pi(2-\sqrt{2})$
T - 2
b. $\frac{2+\pi(\sqrt{2}-2)}{\pi-2}$
c. $\frac{(\pi-2)}{2(\sqrt{2}+1-\pi)}$
d.

\section*{| Cognitive Domain: Knowing | Content Domain: Statistics |
| :--- | :--- |}

39. If a two-digit number is chosen at random, then find the probability that the number chosen is a multiple of 3.
a. $7 / 25$
b. $29 / 100$
c. $3 / 10$
d. $1 / 3$

Directions (40-42): Study the passage given below and answer the questions based on it.
The students in Mrs Thompson's math class are practising arithmetic progressions (APs), which are sequences of numbers in which the difference between consecutive terms is constant. One day, she challenges the class with a practical application of APs.
Mrs. Thompson explains, "Imagine you are creating a staircase where each step up represents an increase in the sequence. Your starting step is 2 units high, and each subsequent step goes up by 3 units more than the previous one. We'll explore how high the staircase goes over several steps and what patterns we observe."
She sets out the details: the first term of the AP (the height of the first step) is 2 , the common difference (the increase in height from one step to the next) is 3 , and the students are to calculate heights and sum up to different terms.

Unicus Global Mathematics Olympiad (UGMO)

Cognitive Domain: Applying	Content Domain: Algebra

40. If the pattern of increase changes after the $10^{\text {th }}$ step, with each subsequent step increasing by 5 units instead of 3 , what is the height of the $20^{\text {th }}$ step?
a. 70
b. 89
c. 79
d. 129

Cognitive Domain: Applying
 Content Domain: Algebra

41. If the students calculate the total height of the staircase up to the $10^{\text {th }}$ step, what would be the sum?
a. 155
b. 160
c. 170
d. 165

Cognitive Domain: Reasoning
 Content Domain: Algebra

42. Which term of this arithmetic progression will be the first to exceed a height of 50 units?
a. $11^{\text {th }}$ term
b. $15^{\text {th }}$ term
c. $17^{\text {th }}$ term
d. $18^{\text {th }}$ term

Directions (43-45): Carefully read through the passage and answer the following questions.

Science Project

David, a $10^{\text {th }}$-grade student, makes a project on coronavirus in science for an exhibition at his school. In this project, he picks a sphere which has a volume of $38808 \mathrm{~cm}^{3}$ and 11 cylindrical shapes, each with a volume of $1540 \mathrm{~cm}^{3}$ and a length of 10 cm .

\section*{| Cognitive Domain: Knowing | Content Domain: Mensuration |
| :--- | :--- |}

43. Find the diameter of the base of the cylinder.
a. 7 cm
b. 14 cm
c. 16 cm
d. 12 cm

Cognitive Domain: Applying

Content Domain: Mensuration
44. Find the volume of the shape formed.
a. $45738 \mathrm{~cm}^{3}$
b. $85541 \mathrm{~cm}^{3}$
c. $55748 \mathrm{~cm}^{3}$
d. $24625 \mathrm{~cm}^{3}$

Unicus Global Mathematics Olympiad (UGMO)

Cognitive Domain: Applying \quad Content Domain: Mensuration

45. Find the volume of the shape formed. Find the total area covered by cylindrical shapes on the surface of sphere. (in approx.)
a. $1470 \mathrm{~cm}^{2}$
b. $1896 \mathrm{~cm}^{2}$
c. $1580 \mathrm{~cm}^{2}$
d. $1694 \mathrm{~cm}^{2}$

Answer Key

1.	a	2.	b	3.	c	4.	a	5.	b	6.	d	7.	b
8.	c	9.	a	10.	b	11.	c	12.	d	13.	a	14.	c
15.	b	16.	c	17.	a	18.	b	19.	c	20.	b	21.	c
22.	d	23.	a	24.	c	25.	d	26.	a	27.	b	28.	c
29.	a	30.	b	31.	d	32.	c	33.	a	34.	c	35.	d
36.	d	37.	a	38.	b	39.	d	40.	c	41.	a	42.	d
43.	b	44.	c	45.	d								

